Let _ A#{~x} = #{~b} _ represent a system of ~m equations in ~n unknowns. _ [i.e. A is a ~m # ~n matrix, #{~x} is a ~1 # ~n and #{~b} a ~1 # ~m column vector.]
matrix{~a_{1 1}, ... ,~a_{1 ~n} /., ... ,./~a_{~m 1}, ... ,~a_{~m ~n}} matrix{~x_{1}/ ... /~x_{~n}} _ = _ matrix{~b_{1}/ ... /~b_{~m}}
So
array{~a_{1 1} ~x_{1} _ + _ ... _ + _ ~a_{1 ~n} ~x_{~n}, _ = _ ,~b_{1} / . _ . _ . _ . _ . _ . _ ,,. / . _ . _ . _ . _ . _ . _ ,,. /~a_{~m 1} ~x_{1} _ + _ ... _ + _ ~a_{~m ~n} ~x_{~n} , _ = _ , ~b_{~m} }
If _ A#{~x} = #{~b} _ is a system of ~m equations in ~n unknowns
If _ A#{~x} = #{~b} _ is a system of ~n equations in ~n unknowns and |A| ≠ 0 _ then _ the solution of the equation is given by
~x_{~i} _ = _ fract{&Delta._{~i},|A|} _ _ _ _ _ _ 1 &le. ~i &le. ~n
where &Delta._{~i} is the determinant of the matrix obtained by replacing the ~i^{th} column of A by #{~b}.