The #{~{determinant}} of an ~n # ~n matrix A is defined as:
|A| _ = _ sum{&zeta.(&pi.)prod{~a_{~i,&pi.(~i)},~i = 1,~n} , &pi. &in. P_{~n}, _ }
where P_{~n} is the symmetric group (the group of all permutations on ~n elements) and &zeta.(&pi.) is the sign of the permutation. [Briefly, any permutation is a product of a finite number of transpositions of two elements at a time. If the number of transpositions is odd the sign of the permutation is &minus.1, if it is even the sign is +1.]
#{Lemma}: |A^T| = |A|
Proof:
|A| _ = _ sum{&zeta.(&pi.)prod{~a_{~i,&pi.(~i)},~i = 1,~n} , &pi. &in. P_{~n}, _ }
_ _ _ _ = _ sum{&zeta.(&pi.)prod{~a^T_{&pi.(~i),~i},~i = 1,~n} , &pi. &in. P_{~n}, _ }
_ _ _ _ = _ sum{&zeta.(&pi.)prod{~a^T_{~j,&pi.^{&minus.1}( ~j)}, _ ~j = 1,~n} , &pi. &in. P_{~n}, _ } _ _ _ _ _ _ where ~j = &pi.(~i)
_ _ _ _ = _ sum{&zeta.(&sigma.)prod{~a^T_{~j ,&sigma.( ~j)}, _ ~j = 1,~n} , &sigma. &in. P_{~n}, _ } _ = _ |A^T|
where &sigma. = &pi.^{&minus.1}. _ Note that _ &zeta.(&sigma.) = &zeta.(&pi.).
#{Lemma}: Let R_{*} represent the elementary row matrices , then
Proof:
|B| _ = _ sum{&zeta.(&pi.)prod{~b_{~i,&pi.(~i)},~i = 1,~n} , &pi. &in. P_{~n}, _ }
_ _ _ _ = _ sum{&zeta.(&pi.) λprod{~a_{~i,&pi.(~i)},~i = 1,~n} , &pi. &in. P_{~n}, _ } _ = _ λ |A|
(since one element is not equal, namely _ ~b_{~s,&pi.(~s)} = λ~a_{~s,&pi.(~s)} _ for any &pi..)Corollary: If A has a zero row then |A| = 0
For suppose the ~s^{th} row of A is zero, then _ R_{λ~s} A = A _ for any λ so _ |A| = λ |A| _ &forall. λ _ &imply. _ |A| = 0.
_
|B| _ = _ sum{&zeta.(&pi.)prod{~a_{~i,&sigma.(~i)},~i = 1,~n} , &pi. &in. P_{~n}, _ }
|B| _ = _ &minus.sum{&zeta.(&sigma.)prod{~a_{~i,&sigma.(~i)},~i = 1,~n} , &sigma. &in. P_{~n}, _ } _ = _ &minus. |A|
prod{~b_{~i,&pi.(~i)},~i = 1,~n} _ = _ prod{~a_{~i,&pi.(~i)},~i = 1,~n} _ _ _ + _ _ _ λ ~a_{~t,&pi.(~s)} prod{~a_{~i,&pi.(~i)},~i ≠ ~s, _ }
|B| _ = _ |A| _ _ _ + _ _ _ λsum{&zeta.(&pi.) ~a_{~t,&pi.(~s)} prod{~a_{~i,&pi.(~i)},~i ≠ ~s, _ }, &pi. &in. P_{~n}, _ }
sum{&zeta.(&pi.) ~a_{~t,&pi.(~s)} ~a_{~t,&pi.(~t)} prod{~a_{~i,&pi.(~i)},~i &nin. \{{~s, ~t}\}, _ }, &pi. &in. P_{~n}, _ }
_ = _ sum{&zeta.(&pi.) ~a_{~t,&pi.(~s)} ~a_{~t,&pi.(~t)} prod{~a_{~i,&pi.(~i)},~i &nin. \{{~s, ~t}\}, _ }, &pi. &in. A_{~n}, _ }
_ _ _ _ + _ _ _ sum{&zeta.(&pi.) ~a_{~t,&pi.(~s)} ~a_{~t,&pi.(~t)} prod{~a_{~i,&pi.(~i)},~i &nin. \{{~s, ~t}\}, _ }, &pi. &in. S_{~n}, _ }
where A_{~n} is the set of even permutations (sign = +1), and S_{~n} is the set of odd permutations (sign = &minus.1).sum{&zeta.(&pi.) ~a_{~t,&pi.(~s)} ~a_{~t,&pi.(~t)} prod{~a_{~i,&pi.(~i)},~i &nin. \{{~s, ~t}\}, _ }, &pi. &in. A_{~n}, _ }
_ _ _ - _ _ _ sum{&zeta.(&sigma.) ~a_{~t,&sigma.(~t)} ~a_{~t,&sigma.(~s)} prod{~a_{~i,&sigma.(~i)},~i &nin. \{{~s, ~t}\}, _ }, &sigma. &in. A_{~n}, _ }
An ~n # ~n matrix A is said to be of #{~{full rank}} if rank A = &rho. = ~n.
If an ~n # ~n matrix A is not of full rank, i.e. rank A = &rho. &le. ~n, then |A| = 0.
Proof:
Suppose _ #{~r}_1^T ... #{~r}_{~n}^T _ are the rows of A, they are linearly dependent, _ i.e. &exist. λ_{~i} not all zero such that &sum._{~i} λ_{~i} #{~r}_{~i}^T = #0. _ Suppose λ_{~s} ≠ 0, _ then
sum{ fract{λ_{~i},λ_{~s}} #{~r}_{~i}^T ,~i = 1,~n} _ = _ #{~r}_{~s}^T + sum{ fract{λ_{~i},λ_{~s}} #{~r}_{~i}^T ,~i ≠ ~s, _ } _ = _ #0
Performing the corresponding row operations on A we obtain a matrix with a row of zeros. _ &therefore. its determinant is zero.
An ~n # ~n matrix A is #{~{diagonal}} if _ ~a_{~i ~j} = 0 _ when _ ~i ≠ ~j.
If A is diagonal then _ |A| = &prod._{~i} ~a_{~i ~i} .
Proof:
|A| _ = _ sum{&zeta.(&pi.)prod{~a_{~i,&pi.(~i)},~i = 1,~n} , &pi. &in. P_{~n}, _ }
But only the ~a_{~i ~i} are non-zero, so we only need consider the identity permutation &epsilon., where &epsilon.(~i) = ~i _ &forall. ~i. Note that &zeta.(&epsilon.) = 1, hence the result.
As I_{~n} is a diagonal matrix we have _ |I_{~n}| = 1.
For the elementary row matrices we have:
since R = R I_{~n} in all cases, and the result follows from the previous proposition.
So when R is an elementary row matrix _ |R A| = |R| |A|
|λA| = λ^{~n} |A|
λA is obtained from A by multiplying each row by λ, _ i.e. _ λA = R_{λ1} ... R_{λ~n} A _ so _ |λA| = |R_{λ1}| ... |R_{λ~n}| |A| = λ^{~n} |A|
If A and B are both ~n # ~n matrices then _ |A B| _ = _ |A| |B| _ ( _ = _ |B A| )
Proof:
If rank(A) < ~n then |A| = 0, and _ rank(A B) _ &le. _ min\{rank(A), rank(B)\} _ = 0 _ &imply. _ |A B| = 0
If rank(A) = ~n then A is regular and A = R_1R_2 ... R_{~k} (elementary row matrices).
So |A B| = |R_1 ... R_{~k} B| = |R_1| ... |R_{~k}| |B| = |R_1 ... R_{~k}| |B| = |A| |B|
|A^{&minus.1}| = |A| ^{&minus.1}
|A^{&minus.1}| |A| = |A^{&minus.1}A| = |I_{~n}| = |A| = 1 _ &imply. _ |A^{&minus.1}| = |A| ^{&minus.1} .