Let (S, &Sigma. ), (Q, &Phi. ) be measurable spaces. A function ~h#: S &rightarrow. Q is ~{measurable} (w.r.t. &Sigma. , &Phi. ) _ if ~h^{-1}(A) &in. &Sigma., _ &forall. A &in. &Phi..
[Write ~h^{-1}(&Phi.) &subseteq. &Sigma. ].
The map ~h^{-1} preserves set operations:
So if ~h is measurable, the range of ~h^{-1}, that is ~h^{-1}(&Phi.), is itself a sub-&sigma.-algebra of &Sigma..
We will now consider functions such as ~h#: S &rightarrow. &reals., _ which are measurable (w.r.t. &Sigma., @B).
Write m&Sigma. for the class of &Sigma.-measurable functions on S, and (m&Sigma.)^+ for the non-negative elements of m&Sigma..
~h#: S &rightarrow. &reals., _ S topological space, is called ~{Borel} if ~h is @B(S)-measurable. Most important case is ~h#: &reals. &rightarrow. &reals.
\{ ~h &le. ~c \} #:= \{ ~s &in. S | ~h(~s) &le. ~c \} &in. &Sigma. _ _ (&forall. ~c &in. &reals.)
m&Sigma. is and algebra over &reals., i.e. if λ &in. &reals. and ~h_1, ~h_2, ~h_3 &in. m&Sigma., then:
(&Omega., @F, P) probability space, (Q, &Phi. ) measurable space. A ~{random variable} is a measurable function _ X#: (&Omega., @F ) &rightarrow. (Q, &Phi. ).
(Q,&Phi. ) is called the ~{state space} or ~{range space} of the random variable.
From now on we will be dealing primarily with the special case (Q, &Phi. ) = ( &reals., @B )
X#: (&Omega., @F ) &rightarrow. (Q,&Phi. ) random variable. The ~{distribution}, or ~{law} of X (with respect to P) is the function P^X #: &Phi. &rightarrow. [0,1],
P^X (A) _ = _ P (\{&omega. | X(&omega.) &in. A\}) _ = _ P (X^{-1}(A)) This is sometimes written in the form P(X &in. A).