Let V be a vector space over a field F ( = &reals. or &complex.). An #{~{inner product}} on V is a map p#: V # V -> F , _ written _ p(#~u,#~v) _ = _ #~u #. #~v _ such that
[~{Typographical note}: in general the notation ${~a} is used to denote the complex conjugate of ~a. However as the HTML overline function ${~a} does not work too well with more complex (no pun intended!) expressions for example _ ${#{~u_~i} #. #{~v_~j^T}} _ the notation (#{~u_~i} #. #{~v_~j^T})^c will be used instead.]
The following can be deduced
An #{~{inner product space}} over a field F is vector space V over a field F with a specific inner product, p say (there may be other inner products on V). Let (V,p) designate the inner product space.
Let (V,p) be an inner product space over F, write _ p(#~u,#~v) _ = _ #~u #. #~v . The #{~{norm}} of #~u &in. V is defined as _ || #~u || _ = _ &sqrt.(#~u #. #~u)
#{Lemma}:
Proof:
(#~v - λ#~u) #. (#~v - λ#~u) _ _ >= _ _ 0
so#~v #. #~v - ${λ}#~v #. #~u - λ#~u #. #~v + λ${λ}#~u #. #~u _ _ >= _ _ 0 _ _ _ _ _ _ _ _ &forall. λ
takeλ _ = _ fract{#~v #. #~u,#~u #. #~u} _ _ so _ _ ${λ} _ = _ fract{#~u #. #~v,#~u #. #~u}
substituting:#~v #. #~v - fract{(#~u #. #~v)(#~v #. #~u),#~u #. #~u} - fract{(#~v #. #~u)(#~u #. #~v),#~u #. #~u} + fract{(#~v #. #~u)(#~u #. #~v),#~u #. #~u} _ _ >= _ _ 0
#~v #. #~v - fract{(#~u #. #~v)(#~v #. #~u),#~u #. #~u} _ _ >= _ _ 0
&imply.(#~v #. #~v)(#~u #. #~u) _ _ >= _ _ (#~u #. #~v)(#~v #. #~u) _ = _ | #~u #. #~v |^2
|| #~v ||^2 || #~u ||^2 _ _ >= _ _ | #~u #. #~v |^2 _ _ _ _ _ _ hence result.
|| #~u + #~v ||^2 _ = _ (#~u + #~v) #. (#~u + #~v) _ = _ #~u #. #~u + #~u #. #~v + #~v #. #~u + #~v #. #~v
_ _ _ _ _ _ _ _ _ _ _ = _ || #~u ||^2 + || #~v ||^2 + #~u #. #~v + ${(#~u #. #~v)}
_ _ _ _ _ _ _ _ _ _ _ = _ || #~u ||^2 + || #~v ||^2 + 2 ~R(#~u #. #~v) _ _ _ _ (~R = real part)
_ _ _ _ _ _ _ _ _ _ _ =< _ || #~u ||^2 + || #~v ||^2 + 2 | #~u #. #~v |
_ _ _ _ _ _ _ _ _ _ _ =< _ || #~u ||^2 + || #~v ||^2 + 2 || #~u || || #~v || _ _ _ _ _ (by iii)
_ _ _ _ _ _ _ _ _ _ _ = _ ( || #~u || + || #~v || )^2 _ _ _ _ _ _ _ _ _ _ hence result.
In the following, V is an inner product space with inner product _ #~u #. #~v
#~u &in. V and #~v &in. V are _ #{~{orthogonal}} _ if _ #~u #. #~v = 0
\{#~u_~i \} is an _ #{~{orthogonal set}} _ if _ #~u_~i #. #~u_~j = 0 _ &forall. ~i ≠ ~j . _ _ #~u_~i #. #~u_~i ≠ 0 _ for any ~i , _ i.e. _ #~u_~i ≠ #0 _ any ~i .
\{#~u_~i \} is an _ #{~{orthonormal set}} _ if _ #~u_~i #. #~u_~j = &delta._{~i ~j} _ (Kroenecker delta). _ I.e. a set of orthogonal vectors, each with unit norm.
\{#~u_~i \} is an _ orthogonal set _ &imply. _ the #~u_~i are linearly independent.
Proof:
Suppose &sum._~i λ_~i #~u_~i = #0 for some λ_~i not all zero. _ In particular let λ_~k ≠ 0. _ Now _ (&sum._~i λ_~i #~u_~i ) #. #~u_~k = #0 _ i.e. _ &sum._~i λ_~i (#~u_~i #. #~u_~k) = #0.
But _ &sum._~i λ_~i (#~u_~i #. #~u_~k) = λ_~k (#~u_~k #. #~u_~k) _ since #~u_~i #. #~u_~k = 0 , _ ~i ≠ ~k. _ &imply. _ #~u_~k #. #~u_~k = 0 _ contradicting orthogonality conditions.