Normal Distribution

This is a short discussion of testing normally distributed variables. This will give an introduction to the use of maximum likelihood methods for a continuous distribution and provide results which will be use to provide approximate tests for binomial models. The normal distribution will be covered in more detail in Linear Normal Models .

1 Maximum Likelihood

X is a normally distributed random variable, with mean μ and variance σ², ...X ∼ N(μ, σ²) . ...Suppose σ² is known, we want to estimate μ. For an observed value x, define the likelihood function:

L ( μ ) ...:= ...L ( μ | x ) ...:= ...f ( x | μ ) ...= ...

1

2πσ²
exp
(x μ)2

2σ²

Where f ( x ) is the density function of the normal distribution. L ( μ ) reaches its maximum when ...μ = x, ...so ...


μ
.
...= ...x

2 Likelihood Ratio

Consider the hypothesis ...H: μ = μ0 . ...The Likelihood Ratio Test is

LR (x) ...= ...

L(μ0)

L(

μ
.
)
...= ...
exp { (x μ0)2 / 2σ²}

exp { (x x)2 / 2σ²}

...........................= ...exp { (x μ0)2 / 2σ²}

3 Significance Probability

Recall that for a given hypothesis H: μ = μ0, the significance probability for the result x is:

SP( x ) ...= ...P{ y | LR (y) ≤ LR (x) }

Now .........LR (y) ≤ LR (x) ............(y μ0)2 ≥ (x μ0)2

case 1) ...x > μ0, ...then

LR (y) ≤ LR (x) ............yx ......or ......y ≤ 2μ0 x

SP ...= ...P(LR (y) ≤ LR (x)) ...= ...P(yx) ......+ ......P(y ≤ 2μ0 x)

.........= ...

1 Φ
x μ0

σ
...+ ...Φ
μ0 x

σ
......= ......
μ0 x

σ

case 2) ...x < μ0, ...then

LR (y) ≤ LR (x) ............y μ0 ......μ0 x ......or ......μ0 y ......x μ0

....................................y ≥ 2μ0 x ......or ......yx

SP ...= ...P(LR (y) ≤ LR (x)) ...= ...P(yx) ......+ ......P(y ≥ 2μ0 x)

.........= ...Φ

x μ0

σ
...+ ...
1 Φ
μ0 x

σ
......= ......
x μ0

σ

In general

SP( x ) ...= ...
| x μ0 |

σ

4 Confidence Interval

For which values of μ0 will we accept the hypothesis at level α? I.e. SP(x) ≥ α, given μ0?

Let εα be the number such that Φ(εα) = α. ...εα is the α × 100 percentile of the N(0,1) distribution.

case 1) ...x > μ0, ...and ...2Φ((μ0 x) / σ) ≥ α

Φ

μ0 x

σ
............α/2

μ0 x

σ
............εα/2

μ0 ............x + σεα/2

case 2) ...x < μ0, ...and ...2Φ((x μ0) / σ) ≥ α

Φ

x μ0

σ
............α/2

x μ0

σ
............εα/2

μ0 ............x σεα/2

Combining the two results, we can define the confidence interval as:

x + σεα/2 ............μ0 ............x σεα/2

[Remember that εα/2 ≤ 0 ...if ...α/2 ≤ 0.5 ... ...which it is as α < 1 always.]